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Two-dimensional global eigenmodes are used as a projection basis both for analysing
the dynamics and building a reduced model for control in a prototype separated
boundary-layer flow. In the present configuration, a high-aspect-ratio smooth cavity-
like geometry confines the separation bubble. Optimal growth analysis using the
reduced basis shows that the sum of the highly non-normal global eigenmodes is
able to describe a localized disturbance. Subject to this worst-case initial condition,
a large transient growth associated with the development of a wavepacket along the
shear layer followed by a global cycle related to the two unstable global eigenmodes
is found. The flow simulation procedure is coupled to a measurement feedback
controller, which senses the wall shear stress at the downstream lip of the cavity
and actuates at the upstream lip. A reduced model for the control optimization is
obtained by a projection on the least stable global eigenmodes, and the resulting
linear-quadratic-Gaussian controller is applied to the Navier–Stokes time integration.
It is shown that the controller is able to damp out the global oscillations.

1. Introduction
Open flows, such as boundary layers, wakes and mixing layers, are subject to

convective instabilities, where the flow acts as an amplifier of disturbances as they
are transported downstream. For some of the flow cases and in particular parameter
ranges self-sustained oscillations may occur. This self-sustaining mechanism can be
captured by the unstable global eigenmodes of the linearized Navier–Stokes operator.
However, a combination of damped global modes is also capable of representing
convective instabilities in non-parallel flows (Cossu & Chomaz 1997; Schmid &
Henningson 2002; Ehrenstein & Gallaire 2005). Numerical investigations performed
by Marquillie & Ehrenstein (2003) addressed separated boundary-layer flow produced
by two-dimensional bump geometries. They showed that elongated separation bubbles
are likely to undergo bursting leading to unsteadiness. By confining the recirculation
bubble between two successive bumps on the plate, Marquillie & Ehrenstein (2003)
interpreted the flow oscillations in terms of the existence of a global saturated mode
oscillating with a well-defined period. Building on their findings we introduce a
smooth high-aspect-ratio (length to depth ratio L/D ≈ 25) cavity-like geometry, which
induces a geometrically confined separation bubble in the boundary-layer flow as
shown in figure 1. Note that this flow case differs from the sharp-edged small-aspect-
ratio (typically L/D = 2) high-Reynolds-number compressible cavity flow arising in
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Figure 1. Streamlines of the steady-state base flow solution used for stability analysis at
Re= 350. The thick line represents the zero level contour. Note the large aspect ratio of
L/D ≈ 25 and the smooth lips.

aerospace applications (see e.g. Rowley & Williams 2006). We view this flow case
as a prototype separated flow, where both streamwise non-normality and global
instability play a central role. In this non-parallel configuration global eigenmodes
of the linearized Navier–Stokes operator become a natural tool for stability analysis.
Here we first show that a sum of the non-normal global modes describes well the
development of a wavepacket and the onset of a global oscillating cycle associated
with the two unstable eigenmodes. Given this ability to reproduce the flow dynamics,
the eigenmodes are used as a basis for a Petrov/Galerkin projection, enabling us to
build a reduced-order model for control.

During the last decade modern control theory has increasingly been applied to fluid
flow problems, given the available computer capacities and sensor/actuator develop-
ments. Linear optimal control theory has been introduced for flow systems governed
by linear instability mechanisms (Bewley & Liu 1998), such as for instance spatially
developing boundary layers (Högberg & Henningson 2002) and it may also be relevant
for nonlinear flows, such as turbulent boundary layers (Kim 2003). Optimal control
of fluid flow based on a full state-space representation of the flow field necessitates
manipulation of very high-dimensional dynamical systems. In weakly non-parallel
flow configurations the problem may become tractable by determining control and
estimation kernels for individual wavenumbers in the approximately homogeneous
space directions (Högberg & Henningson 2002). In practical flow situations full state
information is not available, hence the flow state must be estimated based on sensor
measurements. The estimation process can be seen as an optimal filtering problem
using a Kalman filter, based on the linearized Navier–Stokes equations. Appropriate
stochastic models for the relevant statistics of sensor noise and external disturbances
are essential in order to extract the relevant information from the system (Hœpffner
et al. 2005). In the present work we use the linear quadratic Gaussian (LQG) control
synthesis, where the two subproblems of full information control and estimation are
solved separately in an optimal manner. Combining the two leads to an optimal
measurement feedback control, where the estimated flow is used for control feedback
(see e.g. Lewis & Syrmos 1995).

The design of the controller is intimately related to model reduction and the usual
procedure is that of projecting the equations onto a subspace. One possible approach
is to use the proper orthogonal decomposition modes of the excited flow, thereby
capturing the high-energy content of the flow. Balanced truncation provides a more
attractive basis by selecting vectors that are equally controllable and observable. When
the system becomes large (e.g. 1000 states or more) the standard approach of directly
solving Lyapunov equations needed for balanced truncation becomes intractable.
Rowley (2005) discussed a computationally tractable approach to obtaining the
balancing vectors, based on time-marching algorithms. In globally unstable flow
configurations, the global eigenmodes of the linearized Navier–Stokes system form a
natural projection basis due to their immediate physical interpretation. For instance



Optimal growth, model reduction and control 307

one can judge the best placement of the sensors and actuators for observability and
controllability, intimately connected to the localization of the least stable direct and
adjoint modes respectively (Chomaz 2005).

2. Flow configuration and numerical methods
The Navier–Stokes equations are solved in the domain 0 � x � 400, η(x) � y < 80,

large enough to recover free-stream uniform flow. All variables are made non-
dimensional with the displacement thickness δ∗ and the free-stream velocity U∞ at the
inflow x = 0, where a Blasius profile is prescribed. The Reynolds number is defined
as Re =U∞δ∗/ν, where ν is the kinematic viscosity. The function η(x) is the graph of
the wall. The smooth cavity is symmetric with respect to its centre at xc = 89, and
its upstream part is given by η(x) = −2.25(tanh(a(x − b)) + 1), 0 � x � xc with a = 0.2
and b = 39 matching smoothly the flat plate upstream and downstream.

The streamlines in a subset of the computational domain for the steady state at
Re = 350 are depicted in figure 1. Note that the main effect of the smooth cavity is the
generation of a recirculation zone and a shear layer. The direct numerical simulation
(DNS) procedure has been used in Marquillie & Ehrenstein (2003). Accounting for
wall curvature, a mapping transforms the physical coordinates into the computational
ones, which are discretized using fourth-order finite differences in the streamwise
direction (with 2048 grid points) and Chebyshev-collocation in the vertical direction
(with 97 collocation points).

2.1. Steady state

We found that above Re =325 the flow became subject to self-sustained oscillations.
For a general geometry of this type it is the Reynolds number combined with the
length to depth ratio L/D and the non-dimensional depth D/δ∗ that constitute the
relevant non-dimensional quantities; however when fixing the length and depth of the
smooth cavity the Reynolds number is the only relevant bifurcation parameter. In a
globally unstable regime any noise present in the high-order numerical discretization
will grow exponentially, making it impossible to numerically compute a steady-state
solution by standard time-marching methods. Therefore the technique proposed in
Åkervik et al. (2006) is used to recover the steady state at the current Reynolds number
of Re =350. The Navier–Stokes equations are forced by adding a term proportional
to the difference between the flow state and a filtered solution. If q̇ =NS(q) represents
the nonlinear Navier–Stokes system, the modified system is

q̇ = NS(q) − χ(q − q̄), ˙̄q = (q − q̄)/∆, (2.1)

where the right-hand equation represents the differential form of a causal low-pass
temporal filter. The steady state of (2.1) is also a steady state of the Navier–Stokes
system. A filter width of ∆ =15 has been chosen such that the frequencies of the
instability are targeted and a damping coefficient χ = 0.02 was found to be appropriate
(see Åkervik et al. 2006).

2.2. Eigenmodes

The global eigenmodes are computed by linearizing the Navier–Stokes system about
the steady state U(x, y) = (U (x, y), V (x, y)). The disturbance flow field u(x, y, t) =
û(x, y) e−iωt and pressure p(x, y, t) = p̂(x, y) e−iωt satisfy the partial differential system

−iωû = −(U · ∇)û − (û · ∇)U − ∇p̂ +
1

Re
∇2û, (2.2)
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Figure 2. Eigenvalues of the direct problem (2.4). There are two unstable modes. The modes
labelled m1 − m6 are depicted in figure 3.

0 = ∇ · û. (2.3)

After discretization this is written

−iωlBq l = Aq l with adjoint iωlB
H q+

l = AH q+
l (2.4)

for the eigenfunction q l with corresponding adjoint eigenfunction q+
l , B is the projec-

tion of the total disturbance field on the velocity components; AH is the adjoint discret-
ized operator (conjugate transpose), and the bi-orthogonality condition 〈qk, Bq+

l 〉 = δkl

with respect to the finite-dimensional inner product applies. The operators of the
eigenvalue problem have been discretized on a domain of extent 0 � x � 300, η(x) �
y � 75, sufficiently large to produce converged eigenmodes. Homogeneous Dirichlet
boundary conditions are used at all boundaries except at the outflow, where
a homogeneous Neumann condition is imposed. The domain is mapped into
[−1, 1] × [−1, 1] and a Chebyshev-Chebyshev collocation discretization is used. The
basic steady flow is then interpolated on the new grid. A similar procedure has
been used in Ehrenstein & Gallaire (2005) for the computation of global modes in
the flat-plate boundary layer. A collocation grid with 350 × 65 collocation points
yielded converged stability results. The resulting eigenvalue problem is far too large
to be solved by standard QZ algorithms. However Krylov subspace projections with
dimension m =800 together with the Arnoldi algorithm (see Nayar & Ortega 1993)
proved suitable to recover the part of the spectrum relevant for our analysis. For the
steady state shown in figure 1 the spectrum is depicted in figure 2. For the present
parameters there are two unstable eigenvalues labelled m2 and m3 (only half of the
spectrum with ωr > 0 is shown). Figure 3(a–f ) shows the vertical velocity components
of the direct eigenfunctions associated with the eigenvalues labelled m1−m6 in figure 2,
respectively. As can be seen, there are many similar eigenfunctions, a typical feature of
non-normal operators, and in the following section we will describe the implications of
this for optimal growth. The vertical velocity component of the adjoint eigenfunction
corresponding to the least stable eigenvalue m3 is depicted in figure 3(g). We observe a
clear separation in space between the direct (see figure 3c) and adjoint eigenfunctions,
indicating a strong streamwise non-normality (see Chomaz 2005).

3. Optimal growth
For sufficiently low-amplitude flow perturbations q(t), an eigenmode expansion

q(t) =

N∑
l=1

κl(t)q l (3.1)
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Figure 3. (a–f ) Vertical velocity components of direct eigenfunctions corresponding to the
eigenvalues labelled m1 − m6 in figure 2, respectively. (g) Adjoint eigenfunction corresponding
to m3, the most unstable eigenvalue. Black indicates large negative values and white indicates
large positive values, with the grey tones between. The domain is truncated at y = 14.
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Figure 4. (a) Envelope of maximum energy growth from initial conditions. The different
lines correspond to an increasing number of eigenmodes included in the optimization,
1, 2, 4, 24, . . . , 124, 144 from bottom to top. (b) One realization using initial condition based
on 100 modes: thick line shows the eigenmode system integrated in time and the thin line
shows DNS evolution.

can be used to describe the flow dynamics. The flow evolution is initiated by super-
imposing the optimal initial condition q0 on the steady state, leading to the maxi-
mum energy growth ‖q(t)‖E at a given time t:

G(t) = max
q0 	=0

‖q(t)‖E

‖q0‖E

. (3.2)

The procedure to compute the optimal initial condition is outlined in Schmid &
Henningson (2001) and the subsequent energy envelope for the present flow case is
depicted in figure 4(a). Using one mode we observe the exponential growth of the
most unstable mode. All of the direct eigenfunctions shown in figure 3 are similar;
they are oscillatory and exponentially growing along the shear layer. By optimally
summing the non-normal eigenmodes, cancellation results in an upstream-located
initial wavepacket. This leads to a fast transient energy growth up to t = 200, followed
by a global cycle with a period of approximately 300 time units. This cycle is associated
with the least stable eigenvalues in figure 2. Since the real parts of these modes are a
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Figure 5. Snapshots of the y-integrated streamwise velocity at times 0, 25, . . . , 150, showing
the propagation of a wavepacket in the eigenmode system. The thick line shows the initial
disturbance. The vertical lines indicates the approximate start and end of the recirculation
region.
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Figure 6. x/t diagram for (a) the vertical flow velocity at y = 2 and (b) the pressure at
y = 10, tracing the quantities in the streamwise direction and in time at their respective vertical
position. Black indicates large negative values whereas white indicates large positive values.
The flow initial condition is the optimal initial condition. The horizontal lines show the location
of the cavity lips. The oblique lines trace the path of the wavepacket back to its origin and the
triggering position at the upstream lip of the cavity at the first reflection.

distance of δ ≈ 0.02 apart, and the corresponding eigenfunctions have a very similar
structure, they have the ability to cancel each other, giving rise to a ‘beating’ with a
period of 2π/δ. Schmid & Henningson (2002) observed the same phenomena when
studying a model equation for a falling liquid curtain. Figure 4(b) shows the actual
energy evolution when integrating the eigenmode system (thick line) and DNS system
(thin line) in time using the optimal initial condition based on 100 modes, confirming
the ability of the eigenmode system to describe the relevant flow dynamics. Note that
in the DNS system the initial condition is superimposed on the steady state.

The initial evolution of the wavepacket in the eigenmode system is shown in
figure 5. We observe the spatial exponential growth in disturbance amplitude as the
wavepacket propagates along the shear layer. The spatio-temporal diagram of the
dynamics in the DNS system is depicted in figure 6, where one sees the convection
and growth of the wavepacket along the shear layer, and regeneration at the upstream
cavity lip. A global pressure change, visible in the form of vertical rays, occurs when
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Figure 7. Sketch of the control setting, with a volume forcing actuator, and a wall skin
friction sensor.

the wavepacket reaches the downstream cavity lip; the subsequent propagation of the
regenerated wavepacket is highlighted by the oblique line. This instability mechanism
may be seen as a destabilization of the global mode by the pressure field, where
the pressure yields an immediate feedback mechanism and the strong streamwise
non-normality causes a large growth of the disturbances along the shear layer.

4. Control
To control the cavity flow, we introduce one sensor and one actuator as sketched

in figure 7. The actuator is located at the upstream limit of the cavity, where the least
stable adjoint eigenfunctions have their maximum, so as to trigger the most efficient
response. The least stable adjoint eigenfunction is shown in figure 3(c). The sensor is
placed in the vicinity of the downstream cavity lip where the eigenfunctions have large
amplitude. The sensor measures the wall shear stress

∫
C(x)(∂u/∂y) dx, where C(x) is

a Gaussian function with a width of ≈20. This operation may formally be written as
r = CDNSq for the flow state q . The actuator is a volume forcing of Gaussian shape
on the vertical velocity component located close to the wall at the upstream cavity
lip, with a width of ≈20 and a height of ≈2.

A dynamic model for the cavity flow is constructed using the eigenmode expansion
(3.1). Based on this model an LQG control procedure gives rise to the system

k̇ = Ak + B1w + B2φ, r = Ck + g,

k̇e = Ake + B2φ − L(r − re), re = Cke,

φ = Kke.

⎫⎬
⎭ (4.1)

The vector k(t) = [κ1(t), . . . , κN (t)]T of the expansion coefficients of the flow obeys
the model dynamics, where A is now the diagonal matrix of the eigenvalues. The
external disturbances are modelled as white noise stochastic input w(t) with variance
W , and B1 is the projection on the eigenmodes of the Gaussian-shaped spatial forcing
function centred at x = 50. The projected actuator is denoted B2, and φ(t) is the
actuation signal. These projections are achieved by performing the inner product with
the adjoint modes. The measurement is denoted r , and C is the measurement matrix.
The measurement is corrupted by a stochastic sensor noise g(t) with variance G2. An
estimator is constructed, with estimated state ke, obeying the model dynamics, and
with an estimation feedback forcing L(r − re). The estimation gain L will be designed
such that the estimated state ke converges to the flow state k, i.e. minimizes the mean
kinetic energy of the estimation error k − ke. The control actuation φ is a feedback of
the estimated flow state, with control feedback gain K that will be designed such as
to minimize a weighted sum of the flow mean kinetic energy and the actuation effort.
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Figure 8. Impulse response G(τ ) from measurement signal to control signal. The controller
uses information from about 350 time units in the past.

A central issue is the controllability and observability of the flow for the chosen
actuator and sensor pair. Since, as observed in § 3, the eigenmodes capture the relevant
dynamics, the magnitude of the projections B2 and C of the actuator and sensor
indicate the controllability and observability for each eigenmode. In this manner
one can choose the shape and location of the actuator and sensor based on the
magnitude of these coefficients on the relevant modes as a measure of the quality of
the representation of the actuator and sensor in the reduced system. We have checked
that the response from an impulsive input from the actuator in the DNS and in the
eigenmode system give the same measurement signal in the two systems.

The optimal feedback gains K and L that minimize the flow and estimation error
mean kinetic energy are found by the solution of two algebraic Riccati equations (see
Skelton 1988)

0 = AHXc + XcA − XcB2�
−2BH

2 Xc + Q,

0 = AXe + XeA
H − XeC

HG−2CXe + B1WBH
1 ,

for the matrix unknowns Xc and Xe, and the feedback gains can be obtained as K =
−�−2B2Xc and L= −XeC

HG−2. In our computations, we have assumed an external
disturbance w with unit variance (W =1). The control penalization and sensor noise
variance were chosen as � =5×105 and G =7×105 in order to enforce low-amplitude
feedback gains. The matrix Q is defined such that kHQk measures the kinetic energy
of the disturbances.

Once the two Riccati equations are solved and the feedback gains are obtained, we
can couple the flow and the controller in the following manner:

q̇ = NS(q) + BDNS
2 φ, r = CDNSq, (4.2)

k̇e = (A + B2K + LC)ke − Lr, φ = Kke, (4.3)

where BDNS
2 and CDNS are the actuator and sensor expressed in the DNS. The measure-

ment r is driving the estimated state ke, which in turn is updated online by a Crank–
Nicholson time-integration procedure, feeding back the control signal φ to the DNS
at every time step.

To emphasize the linear relation between the measurement signal and the control
signal through the controller system, we can write

φ(t) =

∫ ∞

0

K e(A+B2K+LC)τL︸ ︷︷ ︸
G(τ )

r(t − τ ) dτ, r(t) = 0, t < 0, (4.4)

where G(τ ) is the impulse response from r to φ, and illustrates how the actuation φ(t)
depends on past measurements r(t − τ ). The impulse response is shown in figure 8.
Note that this formulation could provide an alternative hardware implementation
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Figure 9. (a) Energy of the uncontrolled flow (thin solid line), controlled flow using the model
with four modes (thick solid) and 25 modes (dashed). Inset shows the sensor signal in the
uncontrolled case as thin solid line and controlled using four modes as thick solid line. (b) x/t
diagram for the pressure when the control is applied. This is to be compared to figure 6(b).

of the controller. In order to assess the performance of the computed control and
estimation gains the controller is applied to the same configuration that led to the
evolution shown in figure 6. Reduced models consisting of the 25 and the four least
stable eigenmodes are considered. Figure 9(a) shows that when control is applied, the
exponential energy growth is turned into an exponential decay after the first peak.
There is an almost equivalent performance for both controller dimensions. The sensor
signals for the controlled and uncontrolled case are shown in the inset in figure 9(a).
The sensor signal from the controlled case decays after the first reflections of the
wavepacket at t ≈ 125. It is not possible to control the initial energy growth, before
the wavepacket has reached the sensor located at the downstream cavity lip. The x/t

diagram for the controlled flow in figure 9(b) is to be compared with figure 6(b). When
the control is applied one still sees the vertical rays of the global pressure changes
but the wavepacket regeneration is reduced, leading to a decrease in the levels of
fluctuations at each cycle, i.e. flow stabilization.

5. Conclusions
The cavity flow considered here may be seen as a prototype of non-parallel flow

with self-sustained global instability behaviour. Owing to the non-normallity of the
underlying operator, computed eigenmodes are sensitive to numerical errors and
require high resolution even when using spectral collocation. This sensitivity is,
however, mostly seen in loss of accuracy for the location of eigenvalues in the
complex plane; the mechanism of wavepacket propagation followed by pressure
reflections obtained through optimally summing the non-normal modes proved robust
and in close agreement with DNS, even at lower resolution. Despite the fact that
about 100 modes are required for converged results of optimal growth, many fewer
modes are needed for a stabilizing controller. There is only a negligible loss of control
performance when using as few as four modes in the reduced model. The small
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controller is run in parallel with the DNS at a low computational cost, and provides
the feedback control signal based on the measurement signal taken from the full
DNS. The satisfactory performance of the controller, combined with the low online
computational effort, means that the use of reduced-order models for fluid flows,
built by projection on global eigenmodes in the LQG framework, has promise for the
future.
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Åkervik, E., Brandt, L., Henningson, D. S., Hœpffner, J., Marxen, O. & Schlatter, P. 2006
Steady solutions of the Navier–Stokes equations by selective frequency damping. Phys. Fluids
18, 068102.

Bewley, T. R. & Liu, S. 1998 Optimal and robust control and estimation of linear paths to
transition. J. Fluid Mech. 365, 305–349.

Chomaz, J. M. 2005 Global instabilities in spatially developing flows: non-normality and
nonlinearity. Annu. Rev. Fluid Mech. 37, 357–392.

Cossu, C. & Chomaz, J. 1997 Global measures of local convective instability. Phys. Rev. Lett. 77,
4387–90.

Ehrenstein, U. & Gallaire, F. 2005 On two-dimensional temporal modes in spatially evolving
open flows: the flat-plate boundary layer. J. Fluid Mech. 536, 209–218.

Hœpffner, J., Chevalier, M., Bewley, T. R. & Henningson, D. S. 2005 State estimation in
wall-bounded flow systems. Part 1. Laminar flows. J. Fluid Mech. 543, 263–294.
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